Integrals
推荐文章



n.
构成整体所必需的( integral的名词复数 );不可或缺的;作为组成部份的;完整的
双语例句
He uses this assertion to evaluate real integrals.
他利用这个断言去求实积分的值。
Numerical integration of ordinary integrals and line integrals.
一般的积分以及线积分的数值积分。
权威例句
SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONSSingular integrals and differentiability ...
In Table of Integrals, Series, and Products
Fractional integrals and derivatives of the $H$-function.
Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals
Fractional Integrals and Derivatives: Theory and Applications Translated From the Russian: Integrals and Derivatives of Fractional O...
Quantum Mechanics and Path Integrals
Martingales and stochastic integrals in the theory of continuous trading
Integrals of nonlinear equations of evolution and solitary waves
Tables of Integrals, Series, and Products
1. You know that much about integrals.
你们应该懂很多积分的。
youdao
2. We can convert them to integrals.
我们可以把它变成积分。
youdao
3. I mean, you are doing single integrals.
我的意思是,做一元积分时。
youdao
4. That we can turn the sums into integrals.
以至于我们可以把求和变成积分。
youdao
5. So, line integrals we know how to evaluate.
我们知道如何计算线积分。
youdao
6. In a few weeks, we will be triple integrals.
几个星期后,我们会学习三重积分。
youdao
7. OK, anyway, let's move on to line integrals.
再转到线积分。
youdao
8. Some of them compute different line integrals.
它们中的一些在做不同的线积分。
youdao
9. What if I add all of the small line integrals?
那如果将所有线积分都加起来呢?
youdao
10. So then we have integrals instead of sums.
那么我们用积分代替求和。
youdao
11. I would just calculate three easy line integrals.
我只需计算三个简单的线积分。
youdao
12. OK. Let's see more ways of taking flux integrals.
来看看更多的取通量积分的方法。
youdao
13. You don't have to set up all these line integrals.
不用建立这些线积分。
youdao
14. Let's think about various USES of double integrals.
来想想二重积分的其他用途吧。
youdao
15. Let's start right away with line integrals in space.
现在开始学习空间线积分了。
youdao
16. So conceptually it is very similar to line integrals.
从概念上来看,这与线积分相似。
youdao
17. Well, remember we were trying to do triple integrals.
我们学过了三重积分。
youdao
18. Anyway, that is double integrals in polar coordinates.
这是极坐标系下的二重积分。
youdao
19. One is setting up and evaluating double integrals.
一个是建立并计算二重积分。
youdao
20. So, the first topic will be setting up double integrals.
先来说说关于建立二重积分的事。
youdao
21. So, what I do in that case is I just make two integrals.
在化成两个积分的情况下,如何处理呢?
youdao
22. And, surface integrals, we know also how to evaluate.
对于曲面积分,也已经知道如何计算。
youdao
23. The other one is setting up and evaluating line integrals.
另一个是建立并计算线积分。
youdao
24. Other kinds of integrals we have seen are triple integrals.
我们学过的另一种积分是三重积分。
youdao
25. That is because we are only doing double integrals so far.
这是由于我们才刚开始做二重积分的缘故。
youdao
26. So, in fact, I have to break this into two different integrals.
实际上,要拆成两个不同的积分。
youdao
27. Unfortunately, it is not quite as simple as with line integrals.
很遗憾,它的过程不像线积分那样简单。
youdao
28. So now we're going to triple integrals in spherical coordinates.
现在,在球坐标中进行三重积分。
youdao
29. OK, so I proved that my two line integrals along C1 and C2 are equal.
我证出了分别沿着C1和C2的两个线积分是相等的。
youdao
30. The advantage of this method is you don't have to write any integrals.
这种方法的优点是,不用写出任何积分。
youdao
Integrals




